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Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China 

SUMMARY 

Two numerical methods, the Galerkin finite element method (FEM) and the boundary-fitted co-ordinate 
transformation method (BFCTM), have been applied to solve inelastic non-Newtonian fluid flow in ducts of 
irregular cross-section. Three representative fluid models, namely the power-law, the Ellis and the Bingham 
models, have been analysed. The application of the FEM is straightforward, while for the BFCTM the 
accurate estimation of viscosity on the duct boundary and the proper mesh adjustment appear to be critical 
for generating convergent solutions. A detailed comparison of the two numerical methods in terms of 
volumetric flow rate, axial velocity, shear rate, viscosity and CPU time is given. Both methods can generate 
accurate solutions of velocity over a wide range of variables, but the FEM requires much less computing 
time to reach the same level of accuracy. Only the BFCTM can be used to approximate shear rate and 
viscosity with reasonable accuracy. 

K E Y  WORDS Non-Newtonian flow FEM vs FDM Duct flow 

INTRODUCTION 

Ducts of irregular cross-section appear in many industrial applications.' The motion of inelastic 
non-Newtonian fluids in ducts has been analysed by many authors. The information obtained, 
particularly the pressure drop/flow rate equation, is quite useful for practical engineering needs. 
Existing technical articles for estimating the pressure drop/flow rate equation for non-Newtonian 
fluids in ducts can be divided into two categories: theoretical and empirical. For the theoretical 
part, the equations of motion have to be solved first to obtain the velocity distribution and then 
an integration is performed to determine the pressure drop/flow rate equation. Previous authors 
used the variational principle,'- the finite difference method6 and the finite element m e t h ~ d . ~  All 
the authors assumed that the fluid under consideration obeyed the popular non-Newtonian 
power-law model, except Reference 5. For the empirical part, Kozicki et dB and Miller' 
proposed some simple methods; however, the ranges of applicability and the accuracy of their 
methods need to be examined carefully.g* lo 

Mathematically speaking, there are two difficulties in solving the duct flow problem, namely 
the duct geometry may be quite irregular and the constitutive equations of non-Newtonian fluids 
are rather complicated, which will create a highly non-linear mathematical problem. Currently 
there are two numerical methods that can be used effectively to treat the irregular domain of 
integration: the finite element method (FEM) and the boundary-fitted co-ordinate transformation 
method (BFCTM). Both methods can be combined with conventional iterative techniques to 
solve non-linear problems. The FEM appears to be more popular for non-Newtonian flow 
problems. 
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In this paper we shall present the results of applying these two numerical methods for solving 
the duct flow problem. In addition to the power-law model, we have extended our analysis to 
more realistic generalized Newtonian fluid (GMF) models. Although the methods are applicable 
to any GNF models, we only consider the power-law, the Ellis and the Bingham models here. 
Three duct geometries were studied: circular, square and equilateral triangular. The compu- 
tational results were examined in terms of velocities, volumetric flow rates, shear rates and 
viscosities. The CPU time consumed and the ranges of convergence for this highly non-linear 
mathematical problem are also discussed. Since the exact solutions are available for fluid flow of 
these three models in a circular duct, our comparison will emphasize this duct geometry. 

MATHEMATICAL FORMULATION 

The flow geometry is shown in Figure 1. We consider isothermal, incompressible and fully 
developed laminar flow of non-Newtonian fluids driven by a constant pressure gradient in a duct 
of arbitrary cross-section. The cross-sectional area of the duct remains constant in the 5-direction. 
Since secondary flows are weak and have negligible effect on the pressure drop/flow rate 
equation," we assume that the velocity is purely axial and ttr is the only non-vanishing velocity 
component. The equations of motion reduce to a single e q ~ a t i o n : ~  

a a d P  
~ ( t " ' )  +-(Z,,) = --=constant dF in D. 

ay 
The constitutive equation for the GNF models can be represented as'' 

2 =  -tjA (2) 
and the non-Newtonian viscosity may depend on the scalar invariants of the tensor 2 or A. TX2 and 
fy2 are given by 

fX, = - (attrlax 1, (34  

T~~ = - tj(aw/ay). (3b) 

Figure 1. Flow geometry 
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Substituting (3) into (l), we obtain 

We consider three representative GNF models here and ij can be presented as: 

The power-law model 
2 (n- 1)/2 

i P = k [  (g)2+($) ] I 

The Ellis model 

The Bingham model 

2 112 

i . = V 0 + T o / [  (g)2+(g) ] , z>z,. 

847 

(4) 

(7) 

The power-law and the Ellis models can represent fluids with shear-thinning behaviour, but the 
power-law model fails for the low-shear-rate region. The Bingham model describes a fluid with a 
yield stress." 

We define the dimensionless variables 

V = f / V O ?  (x, y )  =(X, j ) / h ,  w = Wv0/h2( - dP/dF), (8) 

(9) 

with the characteristic length h = D / S .  The average wall stress z, is defined as 

z, = h( - d P/d.5). 

Substituting (8) and (9) into (4H7), we obtain 

and the viscosity equations are 
2 (n-1) /2  

Vp=[ (g)2+(g) ] 
2 ( a - l ) / 2  

V ; l = l + ( q - l V ; l [  2 1 / 2  (g)2+($) ] , 

Here we select qo for the power-law model as 
l / n  1 - l / n  V o = k  T w  
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and the shear rate y is defined as 
2 112 

P=[ (z)2+($) ] . 

The no-slip boundary condition is 

w = O  at  do. 
The volumetric flow rate v is 

h3 z, 
- A, 

rl0 

--- 

where 

2 = [[ wdx dy 
D 

is the dimensionless volumetric flow rate. 
For the power-law model we have 

We can solve (10H14) for w. Once w is available, we can perform a numerical integration to 
obtain A and then the pressure drop/flow rate equation (16) or (17) is determined completely. Note 
that for the power-law model the formulation is independent of z,, and n is the only variable that 
needs to be specified in the computation. If we select h = (a)''', this formulation is identical to the 
case of Reference 7. 

NUMERICAL PROCEDURE 

The finite element method 

problem. w, x and y can be approximated as 
We use the Galerkin finite element method with an isoparametric element to solve the flow 

where L represents the number of nodes in each element and 4 is the interpolation function. 

ating boundary condition (14), we obtain 
We apply the Galerkin process to (10). After performing an integration by parts and incorpor- 

~,(W)=K,~W~-A,=O, m , i = l , 2 , .  . . , L, (19) 
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where 
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and 

with e the area of the element. 
To evaluate (20H22), we transform e to a local co-ordinate system and then perform a 

numerical integration using the Gaussian quadrature method. We have used the nine-node 
Lagrangian element in our computation because it has been identifiedl2-l4 as a powerful element 
for generating accurate numerical solutions. The 2 x 2 and 3 x 3 Gaussian quadrature methods 
were used for numerical integration and the Gauss points can be found in standard 
textbooks.’’. l 6  

Equation (19) was previously solved for power-law fluids by the FEM.7 The viscosity function 
(17) was substituted into (19) and then Newton’s method was applied to determine w. However, 
this approach is not suitable for GNF models such as Ellis fluids; even if we introduce (12) into 
(19), the viscosity qE cannot be eliminated and there are two unknowns, w and qE, in the resulting 
equation. 

The method suggested by Lyness et a l l7  was adopted for our computation. If we assume the 
values of q at the Gauss points, then Kmi and A, can be evaluated easily and (19) reduces to a 
linear system of equations which can be solved by the frontal method.’* With the values of w 
available, we can estimate the velocity gradients by differentiating the interpolation function for w 
in (18) and update the viscosities at the Gauss points. This iterative process can be repeated until 
convergence is achieved. 

The above approach can be carried out straightforwardly for power-law fluids. The Ellis model 
gives an implicit relation between the viscosity and the velocity gradients as indicated in (12). An 
iterative scheme is needed to update the viscosity at the Gauss points and we used Newton’s 
method in our computation. For the Bingham model the ‘infinity’ in (13) needs some modifi- 
cations so that it is suitable for computation. We adopted the strategy of ODonovan and 
Tanner” to approximate the Bingham model numerically, and (13) is modified as 

q B  = looo, IYI Y E )  

qB = 1 + (:)/[ (g)’ + ($)’I”’. I Y I > yC3 

and 5o=IYc1(11B- 1)=999ly,l. 
The number lo00 was selected arbitrarily. We found, as previous authors observed,” that as 

long as this number is large it will not affect the numerical solutions. 

The jinite difierence method 

The study of the numerical generation of the curvilinear co-ordinate system has been reviewed 
by Thompson et al.” The BFCTM developed by Thompson et  al.” is used here to map the duct 
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geometry to a rectangular domain for numerical integration. Thompson's method requires us to 
solve the following two mapping equations: 

and subscripts denote partial differentiation. The functions P and Q are used to regulate the mesh 
intervals. 

we rearrange (10) to eliminate first-order derivatives. The 
resulting equation has the form 

Following Wheeler and 

V2(qw)+ qV2 w - wV2v  + 2 = O  in D, (25) 
where V 2  is the Laplacian 

v2 = a2 /a l c2  + a2/ay2. 

Equation (25) is also transformed to ({, () co-ordinates to give 

Ca(rlw)<<-2b(Vw)g + c ( ~ ) ~ < l / J ~  + CP(VW)< + Q ( ~ w ) [ l  

+ rl(aw<< - 2bw,, + cw,,)/J + r?(PW< + Qw,) 
-w(a~g<-2brlcr+crl~r) /J2-w(Prl t+ -2. (27) 

We use second-order formulae to discretize (24) and (27). The rectangular domain in (5, [) co- 
ordinates is divided into M + 1 segments in the (-direction and N + t segments in the [-direction. 
Hence i = 0, M + 1 correspond to the boundary line in the {-direction and j = 0, N + 1 correspond 
to the boundary line in the [-direction. 

For a functionf(5, (), its first and second derivatives can be approximated as 

(f<)i , j=(1/2r)(h+l,  j-A- 1, j), 

(&)i,j=(1/2s)(.h,j+ 1 -f;,j- 1 1 9  

(.G<)i,j= (l/r2) (f; + 1, j-  2h. j+h- 1, j), 

(fi<)i, j=(1/s2) (f;, j +  1 -2f;, j +f;, j- 1 ), 

(&)i, j = (1/4rs) (h  + 1 ,  j +  1 -11 + 1, j - 1 -A - 1 ,  j +  1 +f; - 1, j - 1 )> 

(28) 

where r=A<,  s=A{, Ci=ir, cj=js andfi , j  stands forf(&, cj). 

two sets of formulae: 
Derivatives on the boundary can be approximated using one-sided formulae. We have used 

One-sided ,firmulae with second-order accuracy 
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One-sided formulae with Jirst-order accuracy 

( & ) i , N +  1 =(l/s) (h,N+ 1 - f ; . , N ) .  

The mapping procedure follows the work of Thompson et al.'l For a given duct geometry we 
first discretize the boundary and assign the corresponding mesh points on the boundary of the 
rectangle in the transformed plane; then we give guessed values of the interior mesh points (x, y )  in 
the (l, [) plane. With these guessed values we can estimate a, b, c and J in (24c) using (28). After 
applying (28) to discretize (24a) and (24b), the resulting linear systems of equations are solved by 
the successive line over-relaxation method (SLOR). If the maximum difference between the newly 
generated values and the guessed values is larger than a preset tolerance, we will repeat the 
process. The numerical mapping is complete after the convergent solution is obtained. Values of 
a, b, c and J will be used in (27). 

There are two unknowns, w and q, in (27). We first guess w; the velocity derivatives in the 
viscosity expressions ( l lH13)  can then be approximated using (28) and either (29) or (30). With 
values of q available on all the mesh points in the (t, i) plane, we can solve (27) for w and again 
SLOR is used. We now check convergence for w; if the convergence criterion is not met, we 
replace the guessed values of w by the new values and repeat the process. We can either (i) update 
yi each time with the newly generated w or (ii) keep q fixed until we obtain the convergent solution 
of w and then update q and repeat the process. We have found the second approach is more 
effective. The methods of updating the viscosities for the three fluid models are the same as those 
of the FEM, except that the values are computed at the mesh points. 

RESULTS AND DISCUSSION 

We have selected three representative duct geometries for our computation: circular, square and 
equilateral triangular. All the calculations were performed on a CDC Cyber 180/840 machine. 
The tolerance of convergence was fixed to be 1.0 x loT5.  Comparison of the two methods will be 
carried out in terms of w, 2, y ,  q, the ranges of convergence and the CPU time consumed. Since the 
exact solutions are available for a circular duct, our comparison will emphasize this duct 
geometry. The results for the three fluid models will be discussed separately. 

The power-law model 

We started our analysis with a circular duct. Two grids were used for the FEM. The crude grid 
(grid F1) is shown in Figure 2 and consists of 12 elements and 57 nodes. The refined grid (grid F2) 
was obtained by dividing each of the interior elements into four equal elements and the boundary 
elements into two elements, as indicated by the broken lines in Figure 2, to give 32 elements and 
147 nodes in grid F2. For the BFCTM we divided the boundary of the circular duct into equal 
segments and transformed the duct into a square in (5, [) co-ordinates. To simplify our compu- 
tation, we selected r = s and fixed the relaxation factor to be 1.75 for all the BFCTM compu- 
tations. Three grids were used, with 10 x 10 (grid Bl), 20 x 20 (grid B2) and 30 x 30 (grid B3) 
points. Grid B2 is shown in Figure 3. 

The iterative method (Picard method) we used for the FEM is quite effective for power-law 
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Figure 2. Grid F1 for the FFM 

--5 

Figure 3. Grid B2 with P = Q = O  for the BFCTM 
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fluids with n < 1, in agreement with previous observations.22 We had no difficulty in convergence 
to n = 0.1 for the two grids. For the BFCTM the numerical mapping generally requires 40-50 
iterations. We found that the proper estimation of the viscosity on the duct boundary is a critical 
factor for the convergence of the numerical procedure. Wheeler and Wissler6 used the values of 4 
at the neighbouring interior points to obtain 4 on the boundary through extrapolation. We found 
the ranges of convergence were limited with this approach; using the values of w to approximate 
shear rates and then evaluating 4 on the boundary appears to be a much better method. Clearly 
we could not use centred difference formulae to approximate shear rates on the boundary and (29) 
was used instead. Convergent solutions could also be obtained for n as small as 01 .  

A comparison of A for various grids is shown in Table I. The errors increase slightly as n 
decreases for both methods. Using the 3 x 3 Gauss points for numerical integration is more 
accurate than using the 2 x 2 Gauss points, but the improvement is small. For the BFCTM the 
errors for grid B1 are relatively large compared with those for the other two refined grids, which 
generate quite accurate numerical solutions. 

With the convergent solution of w available, we can estimate shear rates and viscosities. For the 
FEM we can use (18) to obtain these values at each nodal point within an element. If a node 
appears in several elements, we take the average value. We found that both the shear rates and 
viscosities estimated are extremely erroneous. This is understandable because the nine-node 
element we used belongs to the Co-class  element^.'^ For the BFCTM the estimation is straight- 
forward; we can use (28), (29) to obtain the desired values. 

Since grids F1 and B2 generate solutions of comparable accuracy, we shall compare the values 
of w on several points. The three points, which are indicated in Figure 2, were selected from grid B2 
arbitrarily and grid F1 was then set up with these three points appearing as nodes. The results 
with n =0.5 are shown in Table 11. Since the values of the shear rates and viscosities computed are 
extremely erroneous for the FEM, they are not listed in the table. For these particular points 
selected, the velocities computed are accurate; the cases using the 2 x 2 Gauss points are slightly 
worse. For the BFCTM shear rates and viscosities can be approximated with reasonable 
accuracy. Since the power-law model is not valid at zero shear rate, point 3 is a singular point for 
viscosity estimation. 

The CPU seconds consumed for grids F1 and B2 are given in Table 111. For both methods we 
started the iteration with n =  1.0; the convergent solution with n=0.75 was obtained and then 
used as the initial guess for the case n=O.5. The FEM requires only 30% of the CPU time of the 
BFCTM to obtain numerical solutions of Comparable accuracy. 

Table I. Comparison of A for the power-law model of a circular duct ( n =  1.0, A&=6.2832; 
n = 0.5, Azx  = 5.0266) 

FEM BFCTM 

Grid F1 Grid F2 
- 

n 2 x 2 G P t  3 x 3 G P t  2 x 2 G P t  3 x 3 G P t  Grid B1 Grid B2 Grid B3 

1 .o 6.2953 6.2733 6.2816 6.2826 6.3840 6.3147 6.2980 
err % t 0.38 0.16 0.026 0.0096 1.60 0.50 0.24 
0.5 4.9972 5,0093 5.0221 5.023 1 5.1275 5.0531 5.0455 
err%$ 0.59 0.34 0.090 0.070 2.01 0.53 0.38 

*ex=exact solution, tGP =Gauss points. 
$err%=(&-1)/1,,x 100%. 
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Table 11. Values of w, y and qp of the circular duct with n=0.5 (co-ordinates: point 1, (x, y)=(2.0, 00); 
point 2, (x, y)=(0.9644, -0.18 x point 3, (x, y)=(0.12 x 0.12 x 

Grid F1 Grid B2 

2 X 2 G P  3 x 3  GP 

Point 1 2 3 1 2 3 1 2 3 

we, 0 05919 0.6667 0 0.5919 0.6667 0 0.5919 0.6667 
w:", 0 0.5842 0,6569 0 0.5910 0.6699 0 0.5933 0.6676 
err% 0 1.30 1.46 0 0.16 0.49 0 0.24 0.13 

Y e ,  - 1~0000 2.3251 7.3 x lo-'' 

err % 

VP, ex 

v:, num - - - 1.0148 2.0536 233.2 
err% - - 1.48 0.99 - 

- - - - - 

~ ~ - - - - 1.0112 2.3713 6.8 x Y L m  
- - 1.12 1.99 - - - - - 

- - - - - - 1.0000 2.0739 1.2 x lo6 
- - - 

- ~ - - 

*num = numerical solution. 

Table 111. CPU seconds consumed for the circular duct 

Fluid FEM BFCTM 
model Grid F1 (3 x 3 GP) Grid B2 

Power-law 6.39 1 19.1 10 (3.497*) 
( n  = 0.5) 
Ellis 11.887 38.521 (3.497*) 

Bingham 3.910 17.253 (3.497*) 
@=3, t w 1 7 , , 2 = 5 )  

(Tw/% = 5 )  

*CPU time required for mapping 

Since the exact solutions are not available for the other two duct geometries, we only present 
computed values of A. For the FEM the grid for the equilateral triangular duct is shown in 
Figure 4 and consists of 12 elements and 61 nodes. A unit square, which was equally divided into 
16 elements and 81 nodes, was used as the grid for the square duct. For the BFCTM a grid with 
20 x 20 points was used for the equilateral triangular duct; this grid is shown in Figure 5. We also 
used a 20 x 20 grid with equal mesh intervals for the square duct. A comparison of A for these two 
duct geometries is given in Table IV. The differences are very small for ,I generated by these two 
methods. It is interesting to note that for the FEM there is no convergence problem with these 
two duct geometries; we could obtain solutions for n as small as 0.1. However, the BFCTM fails to 
converge if n is small. Table V lists the ranges of convergence for the three duct geometries. It is 
surprising that the ranges of convergence can be extended if we switch to equations (30), which use 
less points for approximation and are of first-order accuracy. Since for highly non-Newtonian 
fluid flow the shear rates vary rapidly near the duct boundary, so do the viscosities, and 
consequently using more points in the approximation does not necessarily give a closer esti- 
mation of the viscosities on the duct boundary. 
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Figure 4. The FEM grid for the equilateral triangular duct 

855 

Figure 5. The 20 x 20 BFCTM grid with P = Q  = O  for the equilateral triangular duct 

We have examined the effect of adjusting the relaxation factor on the range of convergence for 
power-law fluids. The triangular duct was tested and equations (29) were used to approximate 
shear rates. Several relaxation factors ranging from 075 to 1.85 were selected for the computation. 
It was found that the smallest value of n for which we could obtain convergent solutions was 0.4 
for ali the cases. Therefore adjusting the relaxation factor cannot extend the range of convergence. 
However, using a suitable relaxation factor, such as 1.75, needs much less CPU time for iteration 
than using other values. 
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Table IV. Comparison of I for the triangular and square ducts 

Fluid 
Model 

Triangular duct Square duct 

FEM* BFCTM Diffl FEM* BECTM Difft 

Power-law 11.451 11.563 0.98 7.817 7.769 0.60 
( n  = 0.5) 
Ellis 286.39 287.73 0.47 181.84 181.66 0.10 
ic( = 3, L I 7 1 , z  = 5 )  

(%/% = 5 )  
Bingham 9.533 9.516 0.18 6.763 6.734 0.43 

*Based on 3 x 3 GP. 
tDiff= (I(FEM)-L(BFCTM)I/I(FEM) x 100%. 

Table V. The ranges of convergence for the BFCTM 

Circular 
duct* 

'Triangular 
duct * 

Square 
duct * 

Power-law model 

n 0.1-1 0.4- 1 0.2-1 0.3-1 0.1-1 
P 0 0 0 0 0 

0 0 0 0 0 Q 
(29) 
(30) 

X X X 

X X 

Ellis model 

c( 2 3 2 3 3 3 2 3 

P 0 0 0 0 0.02 0 0 0 
0 0 0 0 -0.02 0 0 0 Q 

(29) 
(30) 

5,/71,2 0-100 0-100 0-100 0.4 0-10 0-100 0-100 0-100 

X X X >< X X X 

X 

Bingham model 
~ ~ ~ 

L/% 1-100 30-100 4-100 30-100 1-100 1-100 
P 0 0 0.02 0 0-02 0 

0 0 - 0.02 0 - 0.02 0 Q 
(29) 
(30) 

X X X X X 

X 

*The results are based on 20 x 20 grids for all three duct geometries. 

The Ellis model 

We need to specify two variables, CI and tw / t I j2 ,  in our computation. For the FEM we had no 
difficulty with convergence; however, the accuracy of the numerical solutions deteriorates as o! or 
~ , / t ~ / ~  increases. Figure 6 shows the 1% accuracy curves for grids F1 and F2. The values of 1 
generated are within 1% error below the curves. It is observed from these two curves that if the 
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a 

Figure 6. The 1% accuracy curves of I based on the FEM for the Ellis model 

element number is sufficiently large, such as in the case of grid F1, refining the mesh will not 
improve the numerical accuracy significantly. For the BFCTM the solution accuracy and the 
convergence behaviour are quite different. Figure 7 indicates the maximum values of S , / Z , ~ ~  for us 
to obtain convergent solutions using grid B2. If a < 3, we can obtain accurate values of A which 
are independent of T ~ / T ~ , ~ .  As a increases, which implies the fluid becomes highly shear-thinning, 
both the ranges of convergence and the numerical accuracy decrease. A comparison of these two 
methods in terms of I ,  w, y and qE is given in Table VI for a = 3, sw/sl/z = 5. Both methods generate 
accurate values of A. The estimations of y and qE are also extremely erroneous for the FEM and 
the results are not shown in the table. The errors in y and qE computed using the BFCTM are less 

a 

Figure 7. The ranges of convergence and computational accuracy of A based on the BFCTM for the Ellis model 
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Table VI.  Numerical results for the Ellis model with a=3,  Z , , , / T ~ , ~ = ~  (&,= 111.0; 
?.(grid F1)= 110.06, err%=045; I(grid B2)= 110.82, err%=017) 

Grid F1 (3 x 3 GP) Grid B2 
__ 

Point 1 2 5 1 2 3 

0 
0 
0 

12592 
12.559 
0.26 

13,500 
13.5538 
0.39 

0 
0 
0 

26.000 
24.690 

5.04 
0.0385 
0.0404 
4.99 

12.592 
12.576 
0.13 
3.285 
3.43 1 
4.44 
0.147 
0.143 
2.70 

13300 
13,500 
000 1 

0 
0 
0 

1 .ooo 
1.000 

1.0 x 10-6 

than 5%.  The CPU seconds consumed are also given in Table 111. For both methods we started 
the iteration with the Newtonian case and the solution was used as the initial guess for the case 
a= 3, T ~ / T ~ , ~  = 5. Since qE has to be determined iteratively at each Gauss point, more CPU time is 
required for obtaining convergent solutions. Again the FEM consumes much less CPU time than 
the BFCTM. 

Values of 1 for the other two geometries are also given in Table IV. We used the same grids as 
for the power-law model and the differences are small. For the FEM there is no convergence 
problem with these two duct geometries. For the BFCTM the ranges of convergence for a= 2 and 
3 are also indicated in Table V. The equilateral triangular duct seems to be an awkward geometry 
for the BFCTM. However, we can either use (30) or adjust P and Q to improve the convergence. It 
is noted that with minor adjustments of P and Q we can expand the ranges of convergence 
significantly. A modified grid with non-zero P and Q for the equilateral triangular duct is shown 
in Figure 8. 

0 

A D C 

Figure 8. The 20x 20 BFCTM grid with P =0.02, Q= -0.02 for the equilateral triangular duct 



SOLUTION OF NON-NEWTONIAN FLOW IN DUCTS 859 

The Bingham model 

The numerical accuracy deteriorates as zw/z0 decreases; there will be no flow if zw/tO = 1 .  The 
errors in 1 are around 1 % for grids F1 and B2 with zw/zo =2. Values of A, w, y and we are shown in 
Table VII for the circular duct. Similarly both methods generate accurate A and w, but y and we 
can only be approximated with reasonable accuracy using the BFCTM. The CPU time used is 
also given in Table 111. The Newtonian solution was again used as the initial guess. The FEM 
consumes much less CPU time as in the previous cases. Values of 1 for the other two duct 
geometries are also given in Table IV. The same grids were used and the differences are again 
small. 

There is no convergence problem for the FEM. For the BFCTM the convergence difficulty 
arises if zw/zo is close to one for the equilateral triangular duct. Again we need to adjust P and Q 
or use (30). The ranges of convergence are also indicated in Table V. 

CONCLUSIONS 

We have analysed inelastic non-Newtonian fluid flow in ducts of irregular cross-section. The 
fluids under consideration belong to the class of generalized Newtonian fluids (GNF). We have 
found both the Galerkin finite element method and the boundary-fitted co-ordinate transform- 
ation method can be used to solve the flow problem. 

Three representative GNF models, namely the power-law, the Ellis and the Bingham models, 
have been studied in detail. Both methods can generate solutions of high accuracy for practical 
ranges of variables. As the fluid becomes highly non-Newtonian, i.e. the fluid is highly shear- 
thinning or its yield stress is relatively important, the numerical accuracy deteriorates for both 
methods. 

For the three duct geometries we studied, the FEM does not have any convergence problems. 
However, we found for the BFCTM that using appropriate one-sided formulae to compute 
viscosities on the duct boundary is a critical factor for generating convergent solutions. The 
equilateral triangular duct is particularly awkward for our computation; proper adjustments of 
the forcing functions P and Q are also necessary for us to obtain convergent solutions. 

For the FEM we approximated the shear rates and viscosities on the nodal point by averaging 
those values obtained from each element in which the particular node was included. With this 

Table VII. Numerical results for the Bingham model with 7&, = 5 (Aex = 4.61 1; 
i(grid F1)=4.605, err% =0.14; I(grid B2)=4.638, err%=0.58) 

Grid F1 (3 x 3 GP) Grid B2 

Point 1 2 3 1 2 3 

0 0.560 0.640 0 0.560 0.640 
0 0561 0.655 0 0.562 0.637 
0 0.13 2.41 0 0.21 040 

- __ 0.800 0.282 0 
0.834 0.283 0 

- 4.24 0.39 0 
- 1.250 1.709 1.000 

- - - 1.251 1.706 1.OOO 
- 0.10 0.16 0 

- 
- - - 

- - 

- - 

- - 
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approach we found the values obtained are extremely erroneous. As one of the reviewers 
suggested, it is possible to deduce viscosities at nodes more accurately if they are evaluated at the 
Gauss points and then interpolated onto the finite element trial functions. For the BFCTM we 
could estimate the shear rates and viscosities on each grid point easily and the results are 
reasonably accurate. For all the cases we have studied, the solution generated by the FEM 
requires only 30% of the CPU time of that generated by the BFCTM for the same level of 
accuracy. 
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NOTA.TION 

variable; equation (21) 
variables; equation (24c) 
cross-sectional area of the duct, dimensional and dimensionless 
boundary of D 
a general function; equations (28)-430) 
characteristic length 
Jacobian; equation (24c) 
material constants of the power-law model 
variable; equation (20) 
number of nodes in an element 
numbers of grid points for the BFCTM 
pressure 
forcing functions; equations (24a) ;and (24b) 
mesh intervals of the BFCTM 
wetted perimeter 
volumetric flow rate 
axial velocity component, dimensional and dimensionless 
Cartesian co-ordinates 
lateral Cartesian co-ordinates, dimensionless 

material constants of the Ellis model 
variable; equation (22) 
shear rate 
critical shear rate for the Bingham model 
variable; equation (19) 
rate of deformation tensor 
apparent viscosity 
reference viscosity 
dimensionless volumetric flow rate 
mapped co-ordinates for the BFCTM 
stress tensor and its magnitude 
yield stress 
average wall stress 
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- -  
zxz  3 Z Y Z  components o f t  
4J interpolation function 

Subscripts 

i, j ,  m indices 
P the power-law model 
E the Ellis model 
B the Bingham model 
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